

Welcome to Django Mail Viewer’s documentation!

Contents:

	Django Mail Viewer
	Documentation

	Quickstart

	Features

	Running Tests

	TODO

	Credits

	Installation

	Usage
	Email Backends

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Credits
	Development Lead

	Contributors

	History
	2.1

	2.0

	1.0.0 (2018-04-23)

	0.2.0 (2017-08-20)

	0.1.0 (2016-12-23)

Django Mail Viewer

[image: _images/django-mail-viewer.png]
 [https://badge.fury.io/py/django-mail-viewer][image: _images/badge.svg]
 [https://github.com/jmichalicek/django-mail-viewer/actions?query=workflow%3A%22Python+package%22]View emails in development without actually sending them.

Documentation

The full documentation is at https://django-mail-viewer.readthedocs.io.

Quickstart

Install Django Mail Viewer:

pip install django-mail-viewer

Add it to your INSTALLED_APPS:

INSTALLED_APPS = (
 ...
 'django_mail_viewer',
 ...
)

Add Django Mail Viewer’s URL patterns:

You may want to only include this in development environments

urlpatterns = [
 ...
 path('', include('django_mail_viewer.urls')),
 ...
]

Set your EMAIL_BACKEND in settings.py:

EMAIL_BACKEND = 'django_mail_viewer.backends.locmem.EmailBackend'

Features

	TODO

Running Tests

Does the code actually work?

source <YOURVIRTUALENV>/bin/activate
(myenv) $ pip install tox
(myenv) $ tox

TODO

	Passthrough backend - store the email for display in the views but also pass to another backend which may actually send

	Redis backend using Redis specific functionality for cleaner code and less risk of bugs vs the django cache backend

	Memcached backend

	File based backend - store each email as its own file

	Other backends? ElasticSearch? MongoDB?

	Separate views for each of html, plaintext, attachements, etc. to allow for more customization of display?

Credits

Tools used in rendering this package:

	Cookiecutter [https://github.com/audreyr/cookiecutter]

	cookiecutter-djangopackage [https://github.com/pydanny/cookiecutter-djangopackage]

Installation

At the command line:

$ pip install django-mail-viewer

Usage

To use Django Mail Viewer in a project, add it to your INSTALLED_APPS:

INSTALLED_APPS = (
 ...
 'django_mail_viewer',
 ...
)

Add Django Mail Viewer’s URL patterns:

You may want to only include this in development environments

Django 2
urlpatterns = [
 ...
 path('', include('django_mail_viewer.urls')),
 ...
]

Django 1.11
urlpatterns = [
 ...
 url(r'^', include('django_mail_viewer.urls')),
 ...
]

Set your EMAIL_BACKEND in settings.py:

EMAIL_BACKEND = 'django_mail_viewer.backends.locmem.EmailBackend'

Email Backends

Configurable email backends are supported to allow storing the emails in different storage back ends for display.
There are currentl two supported email backends with more planned.

	django_mail_viewer.backends.locmem.EmailBackend:

	The locmem backend works very similarly to Django’s built in locmem backend, storing the email in a list
in the local memory of the process. If the process running the server, such as manage.py runserver is
restarted for any reason then the stored emails are lost. If you are using a multi-process or asynchronous
setup such as sending emails asynchrously from a celery task or using django-channels then these emails
will likely not be in the local memory for your process serving the view. If you are sending email directly in
an http request/response, using celery always eager, etc. then this may work fine for you.

	django_mail_viewer.backends.cache.EmailBackend:

	The cache backend makes use of Django’s cache. By default it will use the default cache, but you can also specify
a different cache to use. If you use locmem cache then you will have the same limitations as with the locmem backend.
Similarly, using Django’s dummy cache will result in no email being stored. If you use one of Django’s built in
Database, Filesystem, or Memcached backends or a third party backend such as a Redis cache backend then
you will have access to your email across processes and server restarts.

	django_mail_viewer.backends.database.backend.EmailBackend:

	The cache backend makes use of Django’s ORM to store email messages in the database. By default file attachments
are stored in your default media storage. You may want to implement your own model by subclassing AbstractBaseEmailMessage
to customize where file attachments are stored such as to put them in a separate private s3 bucket.

The database backend is in its own Django app so that the models and migrations can be ignored
if you do not intend to use this backend. To use it add mailviewer_database_backend to your INSTALLED_APPS:

INSTALLED_APPS = (
 ...
 'django_mail_viewer',
 'django_mail_viewer.backends.database.apps.DatabaseBackendConfig',
 ...
)

Set your EMAIL_BACKEND in settings.py:

EMAIL_BACKEND = 'django_mail_viewer.backends.database.EmailBackend'

If you are using your own model to store email then this model should also be specfied in the settings

MAILVIEWER_DATABASE_BACKEND_MODEL = 'my_app.MyModel'

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/jmichalicek/django-mail-viewer/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “feature”
is open to whoever wants to implement it.

Write Documentation

Django Mail Viewer could always use more documentation, whether as part of the
official Django Mail Viewer docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/jmichalicek/django-mail-viewer/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up django-mail-viewer for local development.

	Fork the django-mail-viewer repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/django-mail-viewer.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv django-mail-viewer
$ cd django-mail-viewer/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the
tests, including testing other Python versions with tox:

$ flake8 django_mail_viewer tests
$ python setup.py test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.6, 2.7, and 3.3, and for PyPy. Check
https://travis-ci.org/jmichalicek/django-mail-viewer/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ python -m unittest tests.test_django_mail_viewer

Credits

Development Lead

	Justin Michalicek <jmichalicek@gmail.com>

Contributors

None yet. Why not be the first?

History

2.1

	Added allow-same-source-origin to iframe sandbox so that things like @font-face can function on localhost

	Added testing on Django 4.1 and Python 3.11

	Stopped testing on old versions of Python and Django which had already been dropped from setup.py

	Some type hinting fixes

2.0

	Dropped Python 3.5 and 2.7 support

	Testing against Django 2.2 to 3.1

	Dropped testing Django versions less than 2.2

	Added new database backend which stores emails in a model in the database

1.0.0 (2018-04-23)

	Dropped testing of Django 1.8, 1.9 and 1.10

	Stopped using assignment_tag in favor of Django 1.9+ simple_tag functionality, definitely breaking Django 1.8

	Added testing of Django 2.0

	Updated .editorconfig, added flake8 check, isort, and yapf checks and configs

0.2.0 (2017-08-20)

	Added stats toxenv to show coverage stats

	Corrected v0.1.0 release date in history

	Added setting the Django EMAIL_BACKEND setting to quickstart and usage

	Added django cache backend

	Fixed handling of quoted-printable email encoding

	Dropped testing of Django 1.8, added testing of Django 1.11 and Python 3.6

0.1.0 (2016-12-23)

	First release on PyPI.

Index

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_images/django-mail-viewer.png
Ppypi package 2.0.0

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to Django Mail Viewer’s documentation!

 		
 Django Mail Viewer

 		
 Documentation

 		
 Quickstart

 		
 Features

 		
 Running Tests

 		
 TODO

 		
 Credits

 		
 Installation

 		
 Usage

 		
 Email Backends

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

 		
 Credits

 		
 Development Lead

 		
 Contributors

 		
 History

 		
 2.1

 		
 2.0

 		
 1.0.0 (2018-04-23)

 		
 0.2.0 (2017-08-20)

 		
 0.1.0 (2016-12-23)

_static/up.png

_static/up-pressed.png

